Math 315-003 30–31 January 2004 D. Wright Name _____

- 1. Define what it means for a subset $A \subset \mathbf{R}$ to be bounded.
- 2. State the Completeness Axiom.
- 3. State the Archimedian Property.

4. Prove
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
.

- 5. Show a convergent sequence is bounded.
- 6. Show a bounded increasing sequence converges to its supremum.
- 7. Give the sequence definition of what it means for a function $f: D \rightarrow \mathbf{R}$ to be continuous at a point x_0 .

8. Give the epsilon-delta definition of what it means for a function $f: D \rightarrow \mathbf{R}$ to be continuous at a point x_0 .

9. If $x_n \to A$ and $y_n \to B$ are convergent sequences, show $x_n y_n \to AB$.

- 10. Show a continuous function on a closed interval is bounded above.
- 11. If 0 < r < 1, show that $\lim_{n \to \infty} r^n = 0$.
- 12. Prove the Special Case of the Intermediate Value Theorem. If $f : [a,b] \rightarrow \mathbf{R}$ is a continuous function with f(a) < 0 and f(b) > 0, show there is a point x_0 in the open interval (a,b) at which $f(x_0) = 0$.